Part Number Hot Search : 
2SK19 HC274 HC274 2SD2015 LPC2104 0831521 HV732 DEVICE
Product Description
Full Text Search
 

To Download IRFZ44ZSTRRPBF Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
   www.irf.com 1 hexfet ? is a registered trademark of international rectifier. irfz44zpbf irfz44zspbf irfz44zlpbf hexfet ? power mosfet s d g v dss = 55v r ds(on) = 13.9m i d = 51a features advanced process technology ultra low on-resistance dynamic dv/dt rating 175c operating temperature fast switching repetitive avalanche allowed up to tjmax lead-free descriptionthis hexfet ? power mosfet utilizes the latest processing techniques to achieve extremely lowon-resistance per silicon area. additional features of this design are a 175c junction operating temperature, fast switching speed and improved repetitive avalanche rating. these features combine to make this design an extremely efficient and reliable device for use in a wide variety of applications. d 2 pak irfz44zspbf to-220ab irfz44zpbf to-262 irfz44zlpbf absolute maximum ratings parameter units i d @ t c = 25c continuous drain current, v gs @ 10v (silicon limited) a i d @ t c = 100c continuous drain current, v gs @ 10v (see fig. 9) i dm pulsed drain current p d @t c = 25c maximum power dissipation w linear derating factor w/c v gs gate-to-source voltage v e as single pulse avalanche energy (thermally limited)  mj e as (tested) single pulse avalanche energy tested value  i ar avalanche current a e ar repetitive avalanche energy  mj t j operating junction and c t stg storage temperature range soldering temperature, for 10 seconds mounting torque, 6-32 or m3 screw thermal resistance parameter typ. max. units r jc junction-to-case CCC 1.87 c/w r cs case-to-sink, flat, greased surface 0.50 CCC r ja junction-to-ambient CCC 62 r ja junction-to-ambient (pcb mount, steady state)  CCC 40 max. 5136 200 10 lbfin (1.1nm) 80 0.53 20 86 105 see fig.12a,12b,15,16 300 (1.6mm from case ) -55 to + 175 pd - 95379a downloaded from: http:///

 2 www.irf.com   repetitive rating; pulse width limited by max. junction temperature. (see fig. 11).   limited by t jmax , starting t j = 25c, l =0.18mh, r g = 25 , i as = 31a, v gs =10v. part not recommended for use above this value.  i sd 31a, di/dt 840a/s, v dd v (br)dss , t j 175c.  pulse width 1.0ms; duty cycle 2%.  c oss eff. is a fixed capacitance that gives the same charging time as c oss while v ds is rising from 0 to 80% v dss .  limited by t jmax , see fig.12a, 12b, 15, 16 for typical repetitive avalanche performance.  this value determined from sample failure population. 100%tested to this value in production.  this is applied to d 2 pak, when mounted on 1" square pcb ( fr-4 or g-10 material ). for recommended footprint andsoldering techniques refer to application note #an-994. r is rated at t j of approximately 90c. s d g s d g static @ t j = 25c (unless otherwise specified) parameter min. t y p. max. units v (br)dss drain-to-source breakdown volta g e55CCCCCC v ? v dss / ? t j breakdown volta g e temp. coefficien t CCC 0.054 CCC v/c r ds(on) static drain-to-source on-resistanc e CCC 11.1 13.9 m v gs(th) gate threshold volta g e 2.0 CCC 4.0 v g fs forward transconductance 22 CCC CCC s i dss drain-to-source leaka g e current CCC CCC 20 a CCC CCC 250 i gss gate-to-source forward leaka g e CCC CCC 200 na gate-to-source reverse leaka g e CCC CCC -200 q g total gate char g e CCC 29 43 nc q gs gate-to-source char g e CCC 7.2 11 q gd gate-to-drain ("miller") char g e CCC 12 18 t d(on) turn-on dela y time CCC 14 CCC ns t r rise time CCC 68 CCC t d(off) turn-off dela y time CCC 33 CCC t f fall time CCC 41 CCC l d internal drain inductance CCC 4.5 CCC nh between lead, 6mm (0.25in.) l s internal source inductance CCC 7.5 CCC from packa g e and center of die contact c iss input capacitance CCC 1420 CCC pf c oss output capacitance CCC 240 CCC c rss reverse transfer capacitance CCC 130 CCC c oss output capacitance CCC 830 CCC c oss output capacitance CCC 190 CCC c oss eff. effective output capacitance CCC 300 CCC diode characteristics parameter min. t y p. max. units i s continuous source current CCC CCC 51 (body diode) a i sm pulsed source current CCC CCC 200 (body diode)  v sd diode forward voltage CCC CCC 1.2 v t rr reverse recovery time CCC 23 35 ns q rr reverse recover y char g e CCC 17 26 nc t on forward turn-on time intrinsic turn-on time is negligible (turn-on is dominated by ls+ld) v ds = 44v v gs = 10v  ? = 1.0mhz, see fig. 5 v gs = 0v, v ds = 1.0v, ? = 1.0mhz v gs = 10v  mosfet symbol v gs = 0v v ds = 25v v gs = 0v, v ds = 44v, ? = 1.0mhz conditions v gs = 0v, v ds = 0v to 44v t j = 25c, i f = 31a, v dd = 28v di/dt = 100a/s  t j = 25c, i s = 31a, v gs = 0v  showing the integral reverse p-n junction diode. v ds = v gs , i d = 250a v ds = 55v, v gs = 0v v ds = 55v, v gs = 0v, t j = 125c r g = 15 i d = 31a v ds = 25v, i d = 31a v dd = 28v i d = 31a v gs = 20v v gs = -20v conditions v gs = 0v, i d = 250a reference to 25c, i d = 1ma v gs = 10v, i d = 31a  downloaded from: http:///

 www.irf.com 3 fig 2. typical output characteristics fig 1. typical output characteristics fig 3. typical transfer characteristics fig 4. typical forward transconductance vs. drain current 0 1 02 03 04 05 0 i d ,drain-to-source current (a) 0 10 20 30 40 50 60 g f s , f o r w a r d t r a n s c o n d u c t a n c e ( s ) t j = 25c t j = 175c v ds = 10v 2 4 6 8 10 12 v gs , gate-to-source voltage (v) 1.0 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( ) t j = 25c t j = 175c v ds = 15v 60s pulse width 0.1 1 10 100 v ds , drain-to-source voltage (v) 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) 4.5v vgs top 15v 10v 8.0v 7.0v 6.0v 5.5v 5.0v bottom 4.5v 60s pulse width tj = 175c 0.1 1 10 100 v ds , drain-to-source voltage (v) 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) vgs top 15v 10v 8.0v 7.0v 6.0v 5.5v 5.0v bottom 4.5v 60s pulse width tj = 25c 4.5v downloaded from: http:///

 4 www.irf.com fig 8. maximum safe operating area fig 6. typical gate charge vs. gate-to-source voltage fig 5. typical capacitance vs. drain-to-source voltage fig 7. typical source-drain diode forward voltage 1 10 100 v ds , drain-to-source voltage (v) 100 1000 10000 c , c a p a c i t a n c e ( p f ) v gs = 0v, f = 1 mhz c iss = c gs + c gd , c ds shorted c rss = c gd c oss = c ds + c gd c oss c rss c iss 0 5 10 15 20 25 30 q g total gate charge (nc) 0.0 2.0 4.0 6.0 8.0 10.0 12.0 v g s , g a t e - t o - s o u r c e v o l t a g e ( v ) v ds = 44v v ds = 28v v ds = 11v i d = 31a 0.0 0.5 1.0 1.5 2.0 v sd , source-to-drain voltage (v) 0.01 0.10 1 10 100 1000 i s d , r e v e r s e d r a i n c u r r e n t ( a ) t j = 25c t j = 175c v gs = 0v 1 10 100 1000 v ds , drain-to-source voltage (v) 0.1 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) 1msec 10msec operation in this area limited by r ds (on) 100sec tc = 25c tj = 175c single pulse downloaded from: http:///

 www.irf.com 5 fig 11. maximum effective transient thermal impedance, junction-to-case fig 9. maximum drain current vs. case temperature fig 10. normalized on-resistance vs. temperature 25 50 75 100 125 150 175 t c , case temperature (c) 0 5 10 15 20 25 30 35 40 45 50 55 i d , d r a i n c u r r e n t ( a ) -60 -40 -20 0 20 40 60 80 100 120 140 160 180 t j , junction temperature (c) 0.5 1.0 1.5 2.0 2.5 r d s ( o n ) , d r a i n - t o - s o u r c e o n r e s i s t a n c e ( n o r m a l i z e d ) i d = 31a v gs = 10v 1e-006 1e-005 0.0001 0.001 0.01 0.1 1 t 1 , rectangular pulse duration (sec) 0.001 0.01 0.1 1 10 t h e r m a l r e s p o n s e ( z t h j c ) 0.20 0.10 d = 0.50 0.02 0.01 0.05 single pulse ( thermal response ) notes: 1. duty factor d = t1/t2 2. peak tj = p dm x zthjc + tc ri (c/w) i (sec) 0.8487 0.000440.6254 0.00221 0.3974 0.01173 j j 1 1 2 2 3 3 r 1 r 1 r 2 r 2 r 3 r 3 c ci i / ri ci= i / ri downloaded from: http:///

 6 www.irf.com q g q gs q gd v g charge  fig 13b. gate charge test circuit fig 13a. basic gate charge waveform fig 12c. maximum avalanche energy vs. drain current fig 12b. unclamped inductive waveforms fig 12a. unclamped inductive test circuit t p v (br)dss i as fig 14. threshold voltage vs. temperature r g i as 0.01 t p d.u.t l v ds + - v dd driver a 15v 20v v gs 1k vcc dut 0 l 25 50 75 100 125 150 175 starting t j , junction temperature (c) 0 50 100 150 200 250 300 350 400 e a s , s i n g l e p u l s e a v a l a n c h e e n e r g y ( m j ) i d top 3.8a 5.5a bottom 31a -75 -50 -25 0 25 50 75 100 125 150 175 200 t j , temperature ( c ) 1.0 2.0 3.0 4.0 v g s ( t h ) g a t e t h r e s h o l d v o l t a g e ( v ) i d = 250a downloaded from: http:///

 www.irf.com 7 fig 15. typical avalanche current vs.pulsewidth fig 16. maximum avalanche energy vs. temperature notes on repetitive avalanche curves , figures 15, 16:(for further info, see an-1005 at www.irf.com) 1. avalanche failures assumption: purely a thermal phenomenon and failure occurs at a temperature far in excess of t jmax . this is validated for every part type.2. safe operation in avalanche is allowed as long ast jmax is not exceeded. 3. equation below based on circuit and waveforms shown in figures 12a, 12b. 4. p d (ave) = average power dissipation per single avalanche pulse.5. bv = rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. i av = allowable avalanche current. 7. ? t = allowable rise in junction temperature, not to exceed t jmax (assumed as 25c in figure 15, 16). t av = average time in avalanche. d = duty cycle in avalanche = t av f z thjc (d, t av ) = transient thermal resistance, see figure 11) p d (ave) = 1/2 ( 1.3bvi av ) =   t/ z thjc i av = 2  t/ [1.3bvz th ] e as (ar) = p d (ave) t av 1.0e-05 1.0e-04 1.0e-03 1.0e-02 1.0e-01 tav (sec) 0.1 1 10 100 a v a l a n c h e c u r r e n t ( a ) 0.05 duty cycle = single pulse 0.10 allowed avalanche current vs avalanche pulsewidth, tav assuming ? tj = 25c due to avalanche losses 0.01 25 50 75 100 125 150 175 starting t j , junction temperature (c) 0 20 40 60 80 100 e a r , a v a l a n c h e e n e r g y ( m j ) top single pulse bottom 1% duty cycle i d = 31a downloaded from: http:///

 8 www.irf.com fig 17. 
    

 for n-channel hexfet   power mosfets 
   ?  
    ?      ?            p.w. period di/dt diode recovery dv/dt ripple 5% body diode forward drop re-appliedvoltage reverserecovery current body diode forward current v gs =10v v dd i sd driver gate drive d.u.t. i sd waveform d.u.t. v ds waveform inductor curent d = p. w . period     
    + - + + + - - -        ?   
  ?  
 !"!! ?     

#  $$ ? !"!!%"   
 v ds 90%10% v gs t d(on) t r t d(off) t f    &' 1 ( 
#   0.1 %         + -   fig 18a. switching time test circuit fig 18b. switching time waveforms downloaded from: http:///

 www.irf.com 9 to-220ab packages are not recommended for surface mount application. 

 
 

  
   
  lot code 1789 example: t his is an irf1010 note: "p" in as s embly line position i ndi cates "l ead - f r ee" in the assembly line "c" as s embled on ww 19, 2000 int ernat ional part number rect ifier lot code assembly logo year 0 = 2000 dat e code week 19 line c notes: 1. for an automotive qualified version of this part please see http://www.irf.com/product-info/auto/ 2. for the most current drawing please refer to ir website at http://www.irf.com/package/ downloaded from: http:///

 10 www.irf.com  
 

 
  


  
   
  dat e code year 0 = 2000 we e k 02 a = as s e mb l y s i t e code rectifier international part number p = de s ignat e s l e ad - f r e e product (optional) f530s in the assembly line "l" as se mb le d on ww 02, 2000 this is an irf530s with lot code 8024 int e rnat ional logo rectifier lot code as s e mb l y ye ar 0 = 2000 part number dat e code line l we e k 02 or f530s logo assembly lot code notes: 1. for an automotive qualified version of this part please see http://www.irf.com/product-info/auto/ 2. for the most current drawing please refer to ir website at http://www.irf.com/package/ downloaded from: http:///

 www.irf.com 11 to-262 part marking information to-262 package outline dimensions are shown in millimeters (inches) logo rectifier int ernational lot code assembly logo rectifier int ernat ional dat e code we e k 19 year 7 = 1997 part number a = as s e mb l y s i t e code or product (opt ional) p = de s ignat e s l e ad- f r e e example : t his is an irl3103l lot code 1789 assembly part number dat e code week 19 line c lot code year 7 = 1997 as s e mble d on ww 19, 1997 in the assembly line "c" notes: 1. for an automotive qualified version of this part please see http://www.irf.com/product-info/auto/ 2. for the most current drawing please refer to ir website at http://www.irf.com/package/ downloaded from: http:///

 12 www.irf.com data and specifications subject to change without notice. this product has been designed and qualified for the industrial market. qualification standards can be found on irs web site. ir world headquarters: 233 kansas st., el segundo, california 90245, usa tel: (310) 252-7105 tac fax: (310) 252-7903 visit us at www.irf.com for sales contact information . 09/2010    

 ! 
 dimensions are shown in millimeters (inches) 3 4 4 trr feed direction 1.85 (.073) 1.65 (.065) 1.60 (.063) 1.50 (.059) 4.10 (.161) 3.90 (.153) trl feed direction 10.90 (.429) 10.70 (.421) 16.10 (.634) 15.90 (.626) 1.75 (.069) 1.25 (.049) 11.60 (.457) 11.40 (.449) 15.42 (.609) 15.22 (.601) 4.72 (.136) 4.52 (.178) 24.30 (.957) 23.90 (.941) 0.368 (.0145) 0.342 (.0135) 1.60 (.063) 1.50 (.059) 13.50 (.532) 12.80 (.504) 330.00 (14.173) max. 27.40 (1.079) 23.90 (.941) 60.00 (2.362) min. 30.40 (1.197) max. 26.40 (1.039) 24.40 (.961) notes : 1. comforms to eia-418. 2. controlling dimension: millimeter. 3. dimension measured @ hub. 4. includes flange distortion @ outer edge. downloaded from: http:///


▲Up To Search▲   

 
Price & Availability of IRFZ44ZSTRRPBF

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X